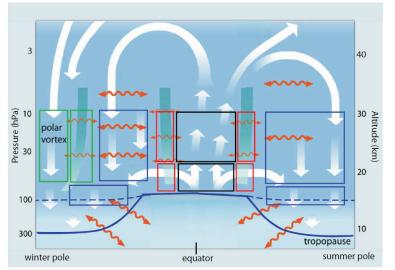
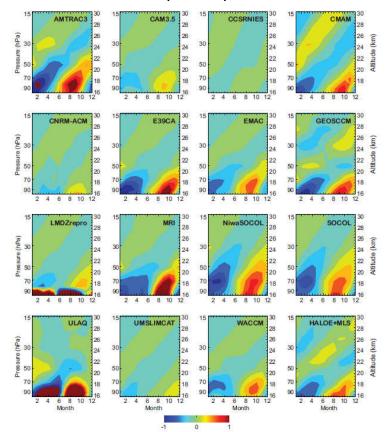

The IGAC/SPARC Chemistry-Climate Model Initiative (CCMI)

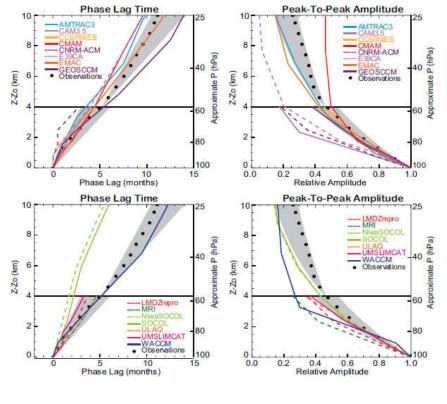


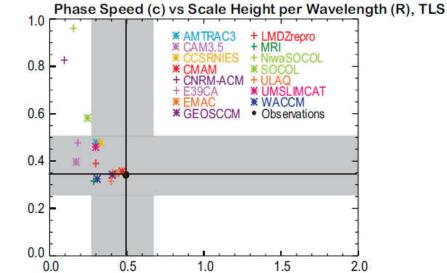
http://blogs.reading.ac.uk/ccmi/

What is CCMI?


- The joint IGAC/SPARC Chemistry-Climate Model Initiative (CCMI) was established to coordinate IGAC and SPARC chemistry-climate model evaluation and associated modeling activities.
- Activities focus on the coupled troposphere-stratosphere domain and assessment of scientific questions in the context of comprehensive stratosphere-troposphere resolving models with chemistry. For example:
 - The impact of stratospheric ozone changes on tropospheric chemistry via both ozone fluxes (e.g. from the projected strengthening of the Brewer-Dobson circulation) and actinic fluxes.
 - Shortcomings in our understanding and/or modeling of long-term ozone trends and methane lifetime
- The CCMI simulations were defined in 2013 and the first output delivered ~mid 2016. Delivery of output is ongoing.
- The evaluation of CCMI models is organized "bottom up" rather than "top down" like the preceding SPARC CCMVal activity
- However, the focus is still on process-oriented diagnostics that test models' ability to represent specific aspects of observations that reveal fundamental physical processes.

Example of Process-Oriented Diagnostics


Chapter 5 (Transport), SPARC CCMVal Report


The ascent rate of the water vapor anomalies is a measure of tropical upwelling, the scale height over which they are attenuated is a measure of in-mixing of extratropical air

The water vapor "tape recorder"

Example of Process-Oriented Diagnostics

Upwelling Rate

In-mixing Rate

CCMI Workshops

	futurør	th CACOP	IGAC	SPAR	World Climate Real	arch Programme	
SCOPE	COMMITTEE	MODEL-INFO	ANALYSIS-INFO	WORKSHOPS	PUBLICATIONS	FORCINGS FOR CMIP6	CONTAC
Work	shops						
Next wo	rkshops						
IGAC/SPARC CCMI Workshop 2017			Météo-F	rance, Toulouse, France	13-15 June 2017		
Past wo	rkshops						
IGAC/SPA	RC CCMI Workshop 2	015	CNR, Ro	me, Italy		7-9 October 2015	
			Find Fina	al Agenda here			
IGAC/SPAF	RC CCMI Workshop 2	014	Universit	y, Lancaster, UK		20-22 May 2014	
IGAC/SPAF	RC CCMI Workshop 2	013	NCAR, E	oulder CO, USA		14-16 May 2013	
	RC CCMI Workshop 2	012	Kongres	shalle, Davos, Switzerland		21-24 May 2012	

CCMI Models

Participating models

	1. ACCESS-CCM	 University of Melbourne, CAWCR, AAD, Australia, NIWA, NZ
	2. CCSM4	• NCAR, ESL, USA
	3. CCSRNIES-MIROC3.2	 NIES, Tsukuba, Japan
	4. CESM-Superfast	• LLNL, USA
	5. CICERO-OsloCTM3	CICERO, Norway
	6. CMAM	 EC (Environment Canada), Canada
	7. CNRM-CCM	Meteo-France; France
	8. EMAC	MESSy-Consortium, Germany
e not all	9. GEOS CCM	• NASA/GSFC, USA
	10. GEOS Chem	 LAGEO, Institute of Atmospheric Physics, Beijing, China
ne another	11. GFDL-AM3	• UCAR/NOAA, GFDL, USA
	12. GISS-E2-R	• NASA-GISS, USA
	13. HadGEM3-ES	Hadley Centre, Met Office, UK
	14. LMDZrepro	IPSL, France
	15. CHASER-MIROC-ESM	 Nagoya University, JAMSTEC, NIES, Japan
	16. MOCAGE	GAME/CNRM, Méteo France
	17. MRI-ESM	• MRI, Japan
	18. NIWA-UKCA	• NIWA, NZ
	19. SOCOL3	 PMOD/WRC and IAC ETHZ, Switzerland
	20. ULAQ-CCM	University of L'Aquila, Italy
	21. UMSLIMCAT	 University of Leeds, UK
	22. UMUKCA-UCAM	University of Cambridge, UK
	23. CESM1-WACCM	• NCAR, USA

>> Full model information

contact/information: Michaela Hegglin

These models are not all independent of one another

Detailed Model Descriptions

Morgenstern et al., GMD, 2017

CCMI Reference Simulations

.....

Name of Reference Simulation	Period	Greenhouse Gases	ODSs	SSTs/SICs	Background & Volcanic Aerosol	Solar Variability	VSLS	QBO	Ozone and Aerosol Precursors
REF-C1	Transient simulation 1960-2010 Appropriate spin up prior to 1960	OBS GHG used for CMIP5 simulations, updated until 2010.	OBS (WMO, 2011)	OBS HadiSST1	OBS Surface Area Density data (SAD)	OBS Spectrally resolved irradiance data, Proton ionization, Ap	YES	OBS or internally generated	OBS Based on Lamarque et al. (2010), but annual emissions
REF-C1SD (nudged for CCMs, or CTMs)	Transient simulation 1980-2010	OBS Same as REF-C1	OBS Same as REF-C1	OBS Consistent with met. reanalysis	OBS Same as REF-C1	OBS Same as REF-C1	Same as REF- C1	Same as REF-C1	OBS Same as REF-C1
REF-C2	Transient simulation 1960-2100 10-year spin up prior to 1960	OBS to 2005 then RCP 6.0 (Masui et al., 2011)	OBS + A1 scenario from WMO (2011)	Modeled SSTs	OBS Background SAD	YES Spectrally resolved irradiance data, Proton ionization, Ap	YES	YES	Same as REF-C1 until 2000 + RCP 6.0 scenario in the future

All CCMs are running REF-C1 and REF-C2 There are some CTMs, which have run only REF-C1SD

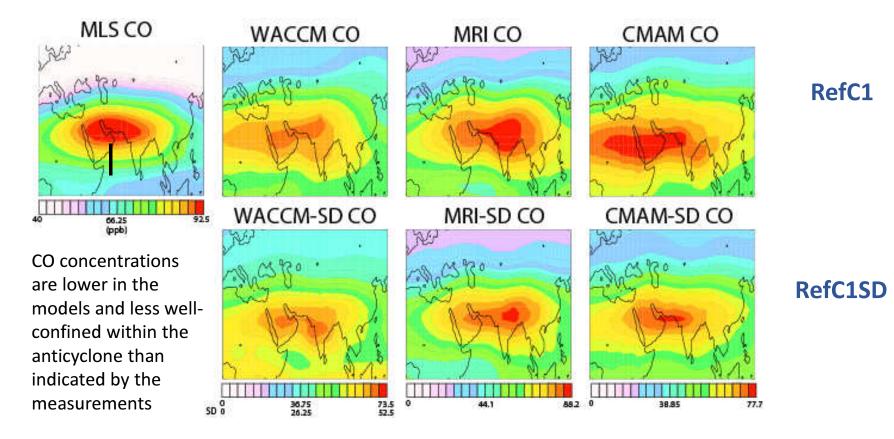
CCMI Sensitivity Simulations

Name of Sensitivity Simulation	Period	GHGs	ODSs	SSTs/SICs	Background & Volcanic Aerosol	Solar Variability	VSLS	QBO	Ozone and Aerosol Precursors
SEN-C1- Emis	1960- 2010	Same as in REF- C1	Same as in REF- C1	Same as in REF-C1	Same as in REF-C1	Same as in REF-C1	Same as in REF- C1	Same as in REF-C1	Different from REF-C1
SEN- C1SD- Emis	1980 2010	Same as in REF- C1SD	Same as in REF- C1SD	Same as in REF-C1SD	Same as in REF-C1SD	Same as in REF-C1SD	Same as in REF- C1SD	Same as in REF-C1SD	Different from REF- C1SD
SEN-C1- fEmis	1960- 2010	Same as in REF- C1	Same as in REF- C1	Same as in REF-C1	Same as in REF-C1	Same as in REF-C1	Same as in REF- C1	Same as in REF-C1	Fixed at 1960 levels
SEN- C1SD- fEmis	1980- 2010	Same as in REF- C1SD	Same as in REF- C1SD	Same as in REF-C1SD	Same as in REF-C1SD	Same as in REF-C1SD	Same as in REF- C1SD	Same as in REF-C1SD	Fixed at 1980 levels
SEN-C1- SSI	1960- 2010	Same as in REF- C1	Same as in REF- C1	Same as in REF-C1	Same as in REF-C1	Different SSI data set (SATIRE) Protons and Ap same as in REF-C1	Same as in REF- C1	OBS or internally generated	Same as in REF-C1

Also fixed GHGs, fixed ODSs, etc....

CCMI Output Variables

Α	В	C	D
air_pressure	Air Pressure	plev	Pa
	air pressure at interfaces	pilev	Pa
air_temperature	Air Temperature	ta	к
geopotential_height	Geopotential Height	zg	m
eastward_wind	Eastward Wind	ua	m s ⁻¹
northward_wind	Northward Wind	va	m s ⁻¹
upward_air_velocity	Upward Air Velocity	wa	m s ⁻¹
tendency_of_air_temperature_due_to_shortwave_heating	Shortwave heating rate	tntsw	K s ⁻¹
tendency_of_air_temperature_due_to_longwave_heating	Longwave heating rate	tntlw	K s ⁻¹
mole_fraction_of_ozone_in_air	Ozone volume mixing ratio	03	mole mole ⁻¹
mole_fraction_of_water_vapor_in_air	Water vapour volume mixing ratio	h2o	mole mole ⁻¹
age_of_stratospheric_air	Mean age of stratospheric air	mean_age	year
mole_fraction_of_nitrous_oxide_in_air	N2O volume mixing ratio	n2o	mole mole ⁻¹
mole_fraction_of_methane_in_air	CH4 volume mixing ratio	ch4	mole mole ⁻¹
mole_fraction_of_carbon_dioxide_in_air	CO2 volume mixing ratio	co2	mole mole ⁻¹
mole_fraction_of_hydrogen_chloride_in_air	HCl volume mixing ratio	hcl	mole mole ⁻¹
mole_fraction_of_carbon_monoxide_in_air	CO volume mixing ratio	co	mole mole ⁻¹
mole_fraction_of_nitrogen_dioxide_in_air	NO2 volume mixing ratio	no2	mole mole ⁻¹
mole_fraction_of_nitrogen_monoxide_in_air	NO volume mixing ratio	no	mole mole ⁻¹
mole fraction of ethane in air	C2H6 volume mixing ratio	c2h6	mole mole ⁻¹
mole_fraction_of_ethyne_in_air	C2H2 volume mixing ratio	c2h2	mole mole ⁻¹
mole fraction of hydrogen cyanide in air	HCN volume mixing ratio	hcn	mole mole ⁻¹
cloud area fraction in atmosphere layer	Cloud Area Fraction	clt	
convective_cloud_area_fraction	Convective Cloud Area Fraction	convclt	
mole fraction of hydroxyl radical in air	OH volume mixing ratio	oh	mole mole ⁻¹
mass_fraction_of_pm10_dry_aerosol_in_air	PM10 mass mixing ratio at 50 percent RH	mmrpm10	kg kg-1
mass_fraction_of_pm2p5_dry_aerosol_in_air	PM2.5 mass mixing ratio at 50 percent RH	mmrpm2p5	kg kg-1
mass_fraction_of_pm1_dry_aerosol_in_air	PM1.0 mass mixing ratio at 50 percent RH	mmrpm1	kg kg-1
tendency_of_mole_concentration_of_O1D_due_to_chemical_gross_production	chemical gross production rate of O1D	prodo1d	mole m-3 s-3
tendency_of_mole_concentration_of_hydroxyl_radical_due_to_chemical_gross_production	chemical gross production rate of OH	prodoh	mole m-3 s-3
tendency_of_mole_concentration_of_ozone_due_to_chemical_production_by_HO2_plus_NO	chemical production rate of o3 via HO2+NO	prodo3viaho2	mole m-3 s-3
tendency_of_mole_concentration_of_ozone_due_to_chemical_production_by_CH3O2_plus_N		prodo3viach3o2	mole m-3 s-3
tendency_of_mole_concentration_of_ozone_due_to_chemical_production_by_RO2_plus_NO	chemical production rate of O3 via RO2+NO	prodo3viaro2	mole m-3 s-1
tendency_of_mole_concentration_of_ozone_due_to_chemical_destruction_by_OH	chemical loss rate of O3 via O3+OH	losso3viaoh	mole m-3 s-1
↓tendency of mole concentration of grope due to chemical destruction by HO2 ↓ notes Coordinates Time-ind 2d Monthly-mear	n 2d Monthly-mean 3d Monthl (+) :	Iosso3viaho?	mole m-3 s-1


Hundreds of outputs available at a range of temporal and spatial resolutions

Research Opportunities Abound!

			level.				
13.	Kunze, Markus, Peter Braesicke Still doing the analysis and will be starting ASAP	Assessment of the influences of the Asian monsoon anti- cyclone on stratospheric water vapor in CCMs.	The CCMI simulations will be analyzed to assess the ability of CCMs to simulate the Asian monsoon anticyclone (AMA), and its related transport characteristics. The CCM results are compared to the ERA-Interim re- analyses and the MIPAS satellite water vapor and ozone data for the recent past. The potential changes of the monsoon circulation in a changing climate and their consequences for the AMA and stratospheric water vapor concentrations will be identified.	REF-C1, REF-C2	ta, ua, va, wa, zg, H2O, O3, intsw, tntlw, clt, convolt, pr	T3M, T2Ms	ERA-INTERIM, MIPAS
14.	Langematz, UINKE, Björn-Martin Sinnhuber, Blanca Ayarzagüena Replied, but cannot indicate yet when planning to start. Need to organize more with partners	Stratosphenc Arctic winters under climate change and the decline of ODS	COMI simulations will be analyzed to study the response of stratospheric Arctic winters to GHG increases and declining ODS. The following questions will be addressed: Will the future Arctic polar vortex intensify or become more disturbed by stratospheric warmings? What will be the dynamical and the radiative contributions to Arctic temperature change? Is there a potential for the development of individual cold winters with extreme Arctic cozone losses?	REP-02, SEN-02-fGHG SEN-02-fODS SEN-02- ROP8.5 SEN-02- fODS2000	ta, ua, va, wa, ta iu, ta 100, zg10, TOZ O3, vt100, tntsw, intiw, psca_nh50, area188K_nh50, area195K_nh50	1 3M T2D T2D T3M TM T3M T01 T01 T01	era-Interim, MIPAS
15.	Langematz, Ulrike, Peter Braesicke, Greg Bodeker Replied, but cannot indicate yet when planning to start. Need to organize more with partners	Development of ozone in the pre1980 era	We analyze the development of ozone in the pre1980 era in the CCMI-REF-C1 simulations. The focus will be on the consistency of the pre1980 behavior of ozone in the CCMI CCMs. Understanding the differences in the evolution of ozone between 1960 and 1980 is necessary for understanding inter-CCM differences in the return of ozone to 1960 or 1980 levels. This is a follow-up study of a CCMVaI-2 project.	REF-C1		CCMVaI-2 data request	
16.		Simulation of distribution and variability of biomass burning tracers CO, HCN, CH3CN in the troposphere and lower stratosohere	By using a 3-D global CTM, we will focus on the study of atmospheric distribution and temporal- spatial variation of biomass burning tracers CO, HCN and CH3CN in the troposphere and lower stratosphere. Comparison of simulation results with available space-borne and in-situ observations will be analyzed.	REF-C1SD; SEN-C1-Emis; SEN-C1-fEmis	HCN, CO (biomass burning tracers)	Original output is daily means in binary format, but the output will be transformed to monthly means in netCDFformat.	ACE-FTS; Aura-MLS; MOPITT; SMILES etc
17.	Lin, Meiyun, and collaborators Still interested in pursuing the project and hopes to hire a	Multi-model and observational assessment of tropospheric ozone variability and trends over	We will examine the extent to which CCMI models represent observed interannual variability and long-term trends of lower tropospheric to surface ozone at northern mid- latitudes. Specifically, we will examine the response of ozone to large-scale heat waves,	REF-C1; REF- C1SD; REF- FIXEMIS	Hourly surface ozone; daily 3-D outputs for CO, O3, CO_25, CO_50 and O3S	DESIRED: daily O3S and O3 outputs	-Satellite measurements of mid-tropospheric O3 and CO -Ozonesonde and aircraft

Only 2 analyses focused on the ASM have been proposed

There Is A Lot That Needs To Be Understood

Chemical gradient across the edge of the anticyclone measures effectiveness of the transport barrier

Model Output Is Available at the Centre for Environmental Data Analysis (Formerly British Antarctic Data Center)

IGAC/SPARC Chemistry-Climate Model Initiative CCM									
	futurørt	h Cacer	IGAC		RC	WCR	D Contraction		
SCOPE C	COMMITTEE	MODEL-INFO	ANALYSIS-INFO	WORKSHOPS	PUB	ILICATIONS	FORCINGS F	FOR CMIP6	CONTACT
BADC	Data Acc	ess							
				access CCMI data. Mos 3GF node. In order to get				directly be acc	essed
1) Register wit	th the BADC:								
	deposit access by obtain your own use	and the second		n the BADC webpage.					
2) Once you ha	ave an account you	can apply for acce	iss to CCMI-1 data	by visiting the CCMI-1 d	ataset w	veb pages:			
 Choose This will Once you Note, cur directory 	take you to a web f ur application got a rrently not all availa tree to find the full i	atasets, e.g. 'ETH-F form which will be s pproved, you will he ble model data are list of available mo	submitted to the CC ave access to all a e listed in the catalo del output. (See All	or access to the data by CMI-1 principal investiga vailable CCMI data sets, ogue, although more mo I datasets) ted here, but links to the	itor for a , so you odel outj	pproval. do not need to put is available	apply for each s . Once you down		
3) Please mak	te sure you follow t	he CCMI data polic	cy, which you find he	ere.					
Data acces	s other than B	ADC							
Model name				Access locati	ion				

NCAR ESG

WACCM

You **MUST** Follow the CCMI Data Policy

A) Model Output Policy Guidelines:

1) Above all, CCMI collaborators and other users are expected to respect the interests of the CCM PIs and their research groups in the interpretation, presentation, and publication of the model output. The best way to achieve this is for a routine line of communication to be opened with the model PIs for collaborators to discuss model output and their research. This guideline implicitly recognizes the complexity of the models and interpretive efforts, and the possibility of ongoing scientific work by the model PIs that has yet to be published or otherwise made available to others.

2) Publication of model results and their interpretation in the scientific literature is encouraged. The CCMI phase 1 (CCMI-1) data policy is currently in PHASE 1:

Those wishing to use the output from CCMI model runs during phase 1 of the project are requested to become formal CCMI collaborators following the guidelines under B) of this policy document.

• PHASE 1: Restricted use policy for all model data. The phase 1 policy allows use of model output by 'CCMI Collaborators' (see above) but includes the obligation to offer coauthorship for model PIs during this time. CCMI collaborators will need to have provided the title, an abstract and a list of data that will be used in their study for the CCMI website (see point A above). CCMI and BADC should be explicitly acknowledged in papers and the models need to be properly referenced (see below wording).

• **PHASE 2:** after 1.5 years from when the last model simulations are submitted to the data archive, the *model data will be made publicly available* for use by any researcher or other users. However, it is strongly recommended that users send evaluations, draft presentations, or papers to model PIs and CCMI coordinators

Becoming a Collaborator is Easy!

Contact Information of principal investigator:

Name: Position: Institution: Address: Email:

Date and Location:

Signature:

	CCMI Collaborator s	Title	Abstract	CCMI-1 Simulations that are required for the analysis	Diagnostics (if already available)	Output (if more than monthly means, please prioritize into DESIRED and MINIMUM)	Observations
1.							

2) Return a signed and scanned copy of this CCMI Model Output Policy document to m.i.hegglin@reading.ac.uk. Upon returning the document, new CCMI Collaborators will formally receive access to the password-protected Archive.

3) Follow http://www.met.reading.ac.uk/ccmi/?page_id=251 for instructions on how to get access to the CCMI Archive at BADC.

Check Out the CCMI Special Issues in GMD and ACP

Geoscientific Model Development

An interactive open-access journal of the European Geosciences Union

EGU.eu | EGU Journals | EGU Highlight Articles | Contact | Imprint |

Special issue

Chemistry-Climate Modelling Initiative (CCMI) (ACP/AMT/ESSD/GMD inter-journal SI) Editor(s): GMD topical editors

Special issue jointly organized between Atmospheric Chemistry and Physics, Atmospheric Measurement Techniques, Earth System Science Data, and Geoscientific Model Development

Download citations of all papers: Bibtex EndNote Reference Manager

31 May 2017

The representation of solar cycle signals in stratospheric ozone. Part II: Analysis of global models

Amanda C. Maycock, Katja Matthes, Susann Tegtmeier, Hauke Schmidt, Rémi Thiéblemont, Lon Hood, Slimane Bekki, Makoto Deushi, Patrick Jöckel, Oliver Kirner, Markus Kunze, Marion Marchand, Daniel R. Marsh, Martine Michou, Laura E. Revell, Eugene Rozanov, Andrea Stenke, Yousuke Yamashita, and Kohei Yoshida Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-477, 2017 Manuscript under review for ACP (discussion: open, 2 comments) (summary)

20 Mar 2017

The Met Office HadGEM3-ES chemistry-climate model: evaluation of stratospheric dynamics and its impact on ozone

Steven C. Hardiman, Neal Butchart, Fiona M. O'Connor, and Steven T. Rumbold Geosci. Model Dev., 10, 1209-1232, https://doi.org/10.5194/gmd-10-1209-2017, 2017

01 Mar 2017

US surface ozone trends and extremes from 1980 to 2014: quantifying the roles of rising Asian emissions, domestic controls, wildfires, and climate

Meiyun Lin, Larry W. Horowitz, Richard Payton, Arlene M. Fiore, and Gail Tonnesen Atmos. Chem. Phys., 17, 2943-2970, https://doi.org/10.5194/acp-17-2943-2017, 2017 [wwwnary]

13 Feb 2017

Review of the global models used within phase 1 of the Chemistry-Climate Model Initiative (CCMI)

Olaf Morgenstern, Michaela I. Hegglin, Eugene Rozanov, Fiona M. O'Connor, N. Luke Abraham, Hideharu Akiyoshi, Alexander T. Archibald, Slimane Bekki, Neal Butchart, Martyn P. Chipperfield, Makoto Deushi, Sandip S. Dhomse, Rolando R. Garcia, Steven C. Hardiman, Larry W. Horowitz, Patrick Jöckel, Beatrice Josse, Douglas Kinnison, Meiyun Lin, Eva Mancini, Michael E. Manyin, Marion Marchand, Virginie Marécal, Martine Michou, Luke D. Oman, Giovanni Pitari, David A. Plummer, Laura E. Revell, David Saint-Martin, Robyn Schofield, Andrea Stenke, Kane Stone, Kengo Sudo, Taichu Y. Tanaka, Simone Tilmes, Yousuke Yamashita, Kohei Yoshida, and Guang Zeng Geosci. Model Dev., 10, 639-671, https://doi.org/10.5194/gmd-10-639-2017, 2017

03 Eeb 2017

Impact of biogenic very short-lived bromine on the Antarctic ozone hole during the 21st century

Rafael P. Fernandez, Douglas E. Kinnison, Jean-Francois Lamarque, Simone Tilmes, and Alfonso Saiz-Lopez Atmos. Chem. Phys., 17, 1673-1688, https://doi.org/10.5194/acp-17-1673-2017, 2017

Summary

Atmospheric Chemistry and Physics

An interactive open-access journal of the European Geosciences Union

EGU.eu | EGU Journals | EGU Highlight Articles | Contact | Imprint |

Special issue

Spe

Chemistry-Climate Modelling Initiative (CCMI) (ACP/AMT/ESSD/GMD inter-journal SI) Editor(s): B. N. Duncan, A. Gettelman, P. Hess, G. Myhre, and P. Young

Special issue jointly organized between Atmospheric Chemistry and Physics, Atmospheric Measurement Techniques, Earth System Science Data, and Geoscientific Model Development

Download citations of all papers: Bibtex EndNote Reference Manager

31 May 2017

The representation of solar cycle signals in stratospheric ozone. Part II: Analysis of global models

Amanda C. Maycock, Katja Matthes, Susann Tegtmeier, Hauke Schmidt, Rémi Thiéblemont, Lon Hood, Slimane Bekki, Makoto Deushi, Patrick Jöckel, Oliver Kirner, Markus Kunze, Marion Marchand, Daniel R. Marsh, Martine Michou, Laura E. Revell, Eugene Rozanov, Andrea Stenke, Yousuke Yamashita, and Kohei Yoshida Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-477, 2017 Manuscript under review for ACP (discussion: open, 2 comments)

20 Mar 2017

The Met Office HadGEM3-ES chemistry-climate model: evaluation of stratospheric dynamics and its impact on ozone

Steven C. Hardiman, Neal Butchart, Fiona M. O'Connor, and Steven T. Rumbold Geosci. Model Dev., 10, 1209-1232, https://doi.org/10.5194/gmd-10-1209-2017, 2017 [summary]

01 Mar 2017

US surface ozone trends and extremes from 1980 to 2014: quantifying the roles of rising Asian emissions, domestic controls, wildfires, and climate

Meiyun Lin, Larry Ŵ. Horowitz, Richard Payton, Arlene M. Fiore, and Gail Tonnesen Atmos. Chem. Phys., 17, 2943-2970, https://doi.org/10.5194/acp-17-2943-2017, 2017 Simmany

13 Feb 2017

Review of the global models used within phase 1 of the Chemistry–Climate Model Initiative (CCMI)

Olaf Morgenstern, Michaela I. Hegglin, Eugene Rozanov, Fiona M. O'Connor, N. Luke Abraham, Hideharu Akiyoshi, Alexander T. Archibald, Slimane Bekki, Neal Butchart, Martyn P. Chipperfield, Makoto Deushi, Sandip S. Dhomse, Rolando R. Garcia, Steven C. Hardiman, Larry W. Horowitz, Patrick Jöckel, Beatrice Josse, Douglas Kinnison, Meiyun Lin, Eva Mancini, Michael E. Manyin, Marion Marchand, Virginie Marécal, Martine Michou, Luke D. Oman, Giovanni Pitari, David A. Plummer, Laura E. Revell, David Saint-Martin, Robyn Schofield, Andrea Stenke, Kane Stone, Kengo Sudo, Taichu Y. Tanaka, Simone Times, Yousuke Yamashita, Kohei Yoshida, and Guang Zeng Geosci, Model Dev., 10, 639-671, https://doi.org/10.5194/gmd-10-639-2017, 2017

03 Feb 2017

Impact of biogenic very short-lived bromine on the Antarctic ozone hole during the 21st century

Rafael P. Fernandez, Douglas E. Kinnison, Jean-Francois Lamarque, Simone Tilmes, and Alfonso Saiz-Lopez Atmos. Chem. Phys., 17, 1673-1688, https://doi.org/10.5194/acp-17-1673-2017, 2017 (summary)

08 Nov 2016

Testing chemistry-climate models' regulation of tropical lower-stratospheric water vapor